Finite Element Methods of Least-Squares Type

نویسندگان

  • Pavel B. Bochev
  • Max Gunzburger
چکیده

We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous theoretical and computational advantages in the algorithmic design and implementation of corresponding finite element methods that are not present in standard Galerkin discretizations. Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic problems and allows us to circumvent stability conditions such as the inf-sup condition arising in mixed methods for the Stokes and Navier–Stokes equations. As a result, application of least-squares principles has led to the development of robust and efficient finite element methods for a large class of problems of practical importance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams

In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...

متن کامل

Least Squares Finite Element Methods for Viscous, Incompressible Flows

This paper is concerned with finite element methods of least-squares type for the approximate numerical solution of incompressible, viscous flow problems. Our main focus is on issues that are critical for the success of the finite element methods, such as decomposition of the Navier-Stokes equations into equivalent first-order systems, mathematical prerequisites for the optimality of the method...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Meshless Methods and Partition of Unity Finite Elements

In this paper, meshless methods and partition of unity based finite element methods are reviewed. In meshless methods, the approximation is built without the explicit connectivity information between the nodes; moving-least squares approximants and natural neighbor-based interpolants are discussed. The enrichment of the finite element approximation through the partition of unity framework is de...

متن کامل

Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems

Some least-squares mixed finite element methods for convectiondiffusion problems, steady or nonstationary, are formulated, and convergence of these schemes is analyzed. The main results are that a new optimal a priori L2 error estimate of a least-squares mixed finite element method for a steady convection-diffusion problem is developed and that four fully-discrete leastsquares mixed finite elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Review

دوره 40  شماره 

صفحات  -

تاریخ انتشار 1998